О как...

Логические задачи

Модераторы: Азарапетыч, Администрация

О как...

Сообщение Шшок » 16 ноя 2015, 16:53

Обнаружил в одной серьезной книге задачку, сам смысл которой меня просто поразил. Я не поверил в справедливость того, что в этой задачке требуется доказать, пока не взял карандаш, бумагу и линейку и не начал чертить бесформенные фигуры. Оказалось, что все верно... Но найти доказательство я так и не смог. Итак:

Доказать, что точки, лежащие на серединах сторон любого (не обязательно выпуклого) четырехугольника, всегда располагаются в вершинах параллелограмма.

Проверено - это факт. Но вот как это доказать?
В борьбе бобра с козлом побеждает бобро. Или козло.
Аватара пользователя
Шшок
Акула пера
Акула пера
 
Сообщения: 8521
Зарегистрирован: 28 ноя 2003, 14:05
Откуда: С большой дороги.

Re: О как...

Сообщение Шшок » 16 ноя 2015, 20:10

Вот ведь я болван... Доказательство-то - проще некуда. Надо было просто подумать несколько в другом направлении. ](*,)
В борьбе бобра с козлом побеждает бобро. Или козло.
Аватара пользователя
Шшок
Акула пера
Акула пера
 
Сообщения: 8521
Зарегистрирован: 28 ноя 2003, 14:05
Откуда: С большой дороги.

Re: О как...

Сообщение Gibby » 17 ноя 2015, 22:53

Шшок писал(а):Вот ведь я болван... Доказательство-то - проще некуда. Надо было просто подумать несколько в другом направлении. ](*,)

Эмм... Ну да :) Там же через подобие параллельность доказывается :)
Аватара пользователя
Gibby
Писатель на заборах
Писатель на заборах
 
Сообщения: 152
Зарегистрирован: 03 окт 2012, 13:41

Re: О как...

Сообщение Шшок » 18 ноя 2015, 16:06

Gibby писал(а):
Эмм... Ну да :) Там же через подобие параллельность доказывается :)


Я не использовал подобие. Но все равно доказательство получилось буквально в одно действие, и даже без чертежа.

В четырехугольнике ABCD проведем диагональ AC. Диагональ делит четырехугольник на два треугольника с общей стороной. Теперь в каждом треугольнике проведем средние линии: в одном треугольнике между сторонами АВ и ВС, а во втором - между сторонами AD и CD. Эти средние линии будут параллельны общей стороне двух треугольников, а значит параллельны между собой. Кроме того, длина каждой средней линии равна половине длины диагонали АС. То есть, имеем два параллельных отрезка равной длины, что и требовалось доказать.
В борьбе бобра с козлом побеждает бобро. Или козло.
Аватара пользователя
Шшок
Акула пера
Акула пера
 
Сообщения: 8521
Зарегистрирован: 28 ноя 2003, 14:05
Откуда: С большой дороги.

Re: О как...

Сообщение Gibby » 18 ноя 2015, 17:40

Шшок писал(а):Я не использовал подобие. Но все равно доказательство получилось буквально в одно действие, и даже без чертежа.

Доказывали одинаково, просто вы использовали срединную линию, про которую я не помнил, а она является следствием обратной теоремы Фалеса, о которой я тоже не помнил, а последняя, в свою очередь, скорее всего доказывается через подобие треугольников, о котором я смутно догадывался :)

Середина является частным случаем, мы можем поделить стороны четырехугольника в любой пропорции (главное в одной для всех) и получим параллелограмм.
Аватара пользователя
Gibby
Писатель на заборах
Писатель на заборах
 
Сообщения: 152
Зарегистрирован: 03 окт 2012, 13:41

Re: О как...

Сообщение Шшок » 09 авг 2016, 15:46

А вот и еще одно неожиданное геометрическое явление, которое я обнаружил совсем недавно, решая с дочкой очередную задачу. Доказательство, разумеется, примитивное. Но сама по себе ситуация выглядит довольно-таки эффектно.
В угол с вершиной в точке А вписана окружность так, что она касается обеих сторон угла. К дуге окружности, обращенной к вершине угла, проведена касательная. Эта касательная пересекает стороны угла в точках В и С.
Оказывается, что периметр треугольника АВС не зависит от выбора точки касания и всегда равен 2R*ctg (A/2), где А - величина угла, а R - радиус окружности.
В борьбе бобра с козлом побеждает бобро. Или козло.
Аватара пользователя
Шшок
Акула пера
Акула пера
 
Сообщения: 8521
Зарегистрирован: 28 ноя 2003, 14:05
Откуда: С большой дороги.


Вернуться в Задачки

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1

cron