Кенгуру

Логические задачи

Модераторы: Азарапетыч, Администрация

Кенгуру

Сообщение ЛевК » 08 авг 2014, 15:26

Трое кенгуру находятся в трех вершинах равностороннего треугольника со стороной один метр. Кенгуру могут прыгать на любое расстояние, но в прыжке они обязаны перепрыгнуть через другого кенгуру, приземлившись с другой стороны на том же от него расстоянии.

Спрашивается : существует ли такая последовательность кенгуринных прыжков, в результате которой кенгуру окажутся в вершинах равностороннего треугольника со стороной 2 метра?
Аватара пользователя
ЛевК
Популярный автор
Популярный автор
 
Сообщения: 1116
Зарегистрирован: 29 ноя 2004, 20:33
Откуда: Израиль

Re: Кенгуру

Сообщение Юляша » 08 авг 2014, 16:56

Нет и еще раз нет. Более того, невозможно "построить" никакой равносторонний треугольник большего размера, чем исходный.

Так как все прыжки обратимы, отпрыгав "алгоритм построения" в обратную сторону, мы получим треугольник меньшего размера, чем исходный. Но если построить треугольную сетку, взяв за базис исходное расположение кенгуру, то видно, что кенгуру могут прыгать только в узлы этой сетки. Следовательно, расстояние между любыми двумя кенгуру не может стать меньше исходного, и уменьшение треугольника невозможно. А значит, невозможно и увеличение.

Как-то так.
Нас двое - я и папа
И погромче нас были витии Да не сделали пользы пером. Дураков не убавим в России, А на умных тоску наведем.
Юляша
Популярный автор
Популярный автор
 
Сообщения: 3159
Зарегистрирован: 15 янв 2009, 12:32

Re: Кенгуру

Сообщение ЛевК » 09 авг 2014, 22:22

Юляша писал(а): А значит, невозможно и увеличение.[/color][/size]
Как-то так.

А вот и не так. Увеличение возможно и еще как. Двое кенгуру перепрыгивая посследоватно друг через друга удаляются от третьего очень далеко, после чего один из них перепрыгивает через третьего. В результате все кенгуру - в разных концах света
Аватара пользователя
ЛевК
Популярный автор
Популярный автор
 
Сообщения: 1116
Зарегистрирован: 29 ноя 2004, 20:33
Откуда: Израиль

Re: Кенгуру

Сообщение Юляша » 11 авг 2014, 08:29

ЛевК писал(а):
Юляша писал(а): А значит, невозможно и увеличение.[/color][/size]
Как-то так.

А вот и не так. Увеличение возможно и еще как. Двое кенгуру перепрыгивая посследоватно друг через друга удаляются от третьего очень далеко, после чего один из них перепрыгивает через третьего. В результате все кенгуру - в разных концах света


Речь у нас все время идет о равностороннем треугольнике, а не о произвольной конфигурации кенгуру))). То, что они могут распрыгаться беспорядочно во все стороны, никто не отрицает. Но равностороннего трегольника любого размера и ориентации, большего, чем исходный, получиться не может.
Нас двое - я и папа
И погромче нас были витии Да не сделали пользы пером. Дураков не убавим в России, А на умных тоску наведем.
Юляша
Популярный автор
Популярный автор
 
Сообщения: 3159
Зарегистрирован: 15 янв 2009, 12:32

Re: Кенгуру

Сообщение Gibby » 11 авг 2014, 12:07

ЛевК писал(а):А вот и не так. Увеличение возможно и еще как. Двое кенгуру перепрыгивая посследоватно друг через друга удаляются от третьего очень далеко, после чего один из них перепрыгивает через третьего. В результате все кенгуру - в разных концах света

Речь о том, что, так как движение кенгуру обратимо, невозможность перейти от большего равностороннего треугольника к меньшему доказывает невозможность перейти от меньшего равностороннего треугольника к большему.
Аватара пользователя
Gibby
Писатель на заборах
Писатель на заборах
 
Сообщения: 152
Зарегистрирован: 03 окт 2012, 13:41

Re: Кенгуру

Сообщение ЛевК » 11 авг 2014, 21:37

Gibby писал(а): Речь о том, что, так как движение кенгуру обратимо, невозможность перейти от большего равностороннего треугольника к меньшему доказывает невозможность перейти от меньшего равностороннего треугольника к большему.

Да, все верно. :) это следует из того что центрально-симметричная точка тоже принадлежит сетке, что доказывается элементарно. Но решение которое я знаю, по моему более изящное - площадь треугольника в вершинах которого находятся кенгуру остается неизменной.
Аватара пользователя
ЛевК
Популярный автор
Популярный автор
 
Сообщения: 1116
Зарегистрирован: 29 ноя 2004, 20:33
Откуда: Израиль

Re: Кенгуру

Сообщение Белая Волка » 12 авг 2014, 05:53

не успела прочитать и подумать, ну да ладно) Интересная задачка, спасибо. Утащу в копилку
Есть в жизни счастье. Spring
Аватара пользователя
Белая Волка
Литератор-любитель
Литератор-любитель
 
Сообщения: 480
Зарегистрирован: 24 ноя 2012, 14:22
Откуда: Омск

Re: Кенгуру

Сообщение Gibby » 12 авг 2014, 08:44

ЛевК писал(а):Да, все верно. :) это следует из того что центрально-симметричная точка тоже принадлежит сетке, что доказывается элементарно. Но решение которое я знаю, по моему более изящное - площадь треугольника в вершинах которого находятся кенгуру остается неизменной.


Оно более изящное, но менее очевидно. Движение кенгуру по ячейкам сетки сразу бросается в глаза как только начинаешь думать.
Аватара пользователя
Gibby
Писатель на заборах
Писатель на заборах
 
Сообщения: 152
Зарегистрирован: 03 окт 2012, 13:41

Re: Кенгуру

Сообщение ЛевК » 12 авг 2014, 13:26

Gibby писал(а):
ЛевК писал(а):Да, все верно. :) это следует из того что центрально-симметричная точка тоже принадлежит сетке, что доказывается элементарно. Но решение которое я знаю, по моему более изящное - площадь треугольника в вершинах которого находятся кенгуру остается неизменной.


Оно более изящное, но менее очевидно. Движение кенгуру по ячейкам сетки сразу бросается в глаза как только начинаешь думать.

Возможно надо было бы подумать над другой формулировкой чтобы отмести очевидный вариант с сеткой. Но это так как я услышал.
Аватара пользователя
ЛевК
Популярный автор
Популярный автор
 
Сообщения: 1116
Зарегистрирован: 29 ноя 2004, 20:33
Откуда: Израиль

Re: Кенгуру

Сообщение ТВВ » 13 авг 2014, 18:07

Дрямс))

Я то думаю,куда же Лева пропал :)

1. Прыжки кенгуру
а) одномоментны
б)направлены по каким-либо отметкам
б.1)медианам
б.2)бессиктрисам
б.3)высоте
2.Сколько раз прыгает кенгуру в рамках вопроса?
ТВВ
Акула пера
Акула пера
 
Сообщения: 7244
Зарегистрирован: 03 янв 2013, 09:17

Re: Кенгуру

Сообщение ЛевК » 14 авг 2014, 15:24

ТВВ писал(а):Дрямс))

Я то думаю,куда же Лева пропал :)

1. Прыжки кенгуру
а) одномоментны
б)направлены по каким-либо отметкам
б.1)медианам
б.2)бессиктрисам
б.3)высоте
2.Сколько раз прыгает кенгуру в рамках вопроса?

:D
1 а неважно
б главное перепрыгнуть через другого кенгуру и приземлиться на том же расстоянии
2 Пока не надоест
Аватара пользователя
ЛевК
Популярный автор
Популярный автор
 
Сообщения: 1116
Зарегистрирован: 29 ноя 2004, 20:33
Откуда: Израиль

Re: Кенгуру

Сообщение Судовой_Врач » 15 авг 2014, 16:36

Вот уж странная задача! :shock:
Эти ваши кенгуру, одновременно подпрыгнув, зависнут и никогда не приземлятся - точки перепрыгивания будут непрерывно удаляться, да еще по кривой!

Летающие кенгуру! Они же такой циклон устроят - все облака разгонят :lol:
Аватара пользователя
Судовой_Врач
Литератор-любитель
Литератор-любитель
 
Сообщения: 485
Зарегистрирован: 22 дек 2008, 13:46

Re: Кенгуру

Сообщение Судовой_Врач » 15 авг 2014, 16:56

Считаю, считаю.. чем дальше, тем страньше. Они у меня уже на орбиту искусственного спутника Земли выходят!
Аватара пользователя
Судовой_Врач
Литератор-любитель
Литератор-любитель
 
Сообщения: 485
Зарегистрирован: 22 дек 2008, 13:46

Re: Кенгуру

Сообщение Судовой_Врач » 15 авг 2014, 20:02

Нет, на самом деле они будут сближаться и столкнутся в центре треугольника.
Это если кенгуру будут плавно поворачивать при прыжке.
Лев, а кенгуру смогут поворачивать? Ну там поджать одну ногу, а другой ногой ритмично помахивать?
Вообще эта идея Володи о синхронном прыжке мне нравится, что-то в ней есть :)
Аватара пользователя
Судовой_Врач
Литератор-любитель
Литератор-любитель
 
Сообщения: 485
Зарегистрирован: 22 дек 2008, 13:46

Re: Кенгуру

Сообщение Судовой_Врач » 15 авг 2014, 21:11

Допустим, поворот разрешается, а кенгуру есть математическая точка.
Тогда путь первого кенгуру - кривая АО + равная ей по длине прямая ОА1.
(Прямая - потому что поворачивать уже не нужно).
1-й кенгур приземлится дальше от центра треугольника, чем он был перед
пряжком. С остальными кенгурами всё симметрично, и новый трегольник
А1В1С1 будет больше, чем АВС.
keng.JPG
keng.JPG (12.79 КБ) Просмотров: 2506

Я всё это леплю здесь потому, что казалось бы незыблемый постулат
Юляши об обратимости прыжков при описанном одновременном прыжке
трех кенгуров не выполняется! Повторный прыжок кенгурей "в обратную
сторону" приведет к новому увеличению треугольника. И т.д.
Где я не прав?
Аватара пользователя
Судовой_Врач
Литератор-любитель
Литератор-любитель
 
Сообщения: 485
Зарегистрирован: 22 дек 2008, 13:46

След.

Вернуться в Задачки

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1

cron